Acute functional neurotoxicity of lanthanum(III) in primary cortical networks.
نویسندگان
چکیده
Because of its diverse physical and chemical properties, lanthanum has been used in various industrial and medical fields. However, until recently, its effects at the cellular and molecular level had hardly been investigated. Using primary cortical networks grown on microelectrode array neurochips, we investigated the acute functional neurotoxicity of lanthanum(III) chloride (LaCl(3)). Lanthanum caused a biphasic concentration-dependent decline in network activity resulting in a complete cessation of the activity at 3mM LaCl(3). However, the networks' oscillatory behavior and synchronicity between neurons remained unaffected until activity loss. The spike activity diminished at half effective concentration values for the two phases of 117 nM and 763 μM LaCl(3) corresponding to 16 ng/ml and 10.6 μg/ml lanthanum, respectively. Furthermore, under the experimental conditions, LaCl(3) did not affect voltage-dependent ion channels contributing to the shape and amplitude of the action potential. Further similarity analysis by pattern recognition exposed significant similarities of the activity changes caused by LaCl(3) to those induced by phenobarbital, gamma-aminobutyric acid, and the gap junction blocker carbenoxolone and sodium propionate. Overall, this study demonstrates inhibitory and potentially sedative toxicological effects of lanthanum(III) ions at concentrations comparable to the plasma concentrations observed in patients with kidney disease being treated with lanthanum carbonate for hyperphosphatemia. Therefore, given the lack of proof that the blood-brain barrier is completely impermeable in uremic patients and lanthanum cannot cross, caution is warranted.
منابع مشابه
Parallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کاملParallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کاملEffects of different culture media on optimization of primary neuronal cell culture for in vitro models assay
Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 120 1 شماره
صفحات -
تاریخ انتشار 2011